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Lecture 5
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Plan for today

Counting processes

Independent censoring
Formal conditions
A proof
Conditions that can be evaluated in graphs

Multiplicative intensity model

The Nelson-Aalen estimator
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Example

7.32, 4.19, 8.11, 2.70, 4.42, 5.43, 6.46, 6.32, 3.80, 3.50.
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Example: Counting process description

7.32, 4.19, 8.11, 2.70, 4.42, 5.43, 6.46, 6.32, 3.80, 3.50.
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What is a counting process?

Definition

A counting process is a right-continuous stochastic process {N(t); t → 0}
with jumps of +1. It satisfies

N(0) = 0, N(t) → 0, t → 0,

N(t) is an integer,

if s ↑ t then N(s) ↑ N(t).

Discrete state space, but right-continuous sample paths.
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Illustration of counting process

Illustration of a counting process

The point is: analyses of classical medical studies often lead to outcomes
that can be represented as counting processes.
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Using the Doob-Meyer decomposition to define intensities

The Doob-Meyer decomposition ensures that there exists a unique
predictable process !(t) such that M(t) = N(t)↓ !(t) is a mean
zero martingale.

Suppose that !(t) is absolutely continuous. 15 Then, there exists a
predictable process ω(t) such that

!(t) =

∫
t

0
ω(s)ds.

ω(t) is the intensity.

!(t) is the cumulative intensity.

15We will assume this throughout, unless otherwise stated.
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Some observations...

[M](t) = N(t), ↔t > 0, when N is a counting process and M is a
martingale given by the Doob-Meyer decomposition,

M(t) = N(t)↓ !(t),

because only the jump remains in the limit

[M](t) = lim
n→↑

n∑

k=1

(”Mk)
2.

↗M↘(t) =
∫
t

0 ω(s)ds.
Argument in the next slide.
It follows that !(t) is a compensator of N(t) and M(t)2. Useful,
remember that Var(M(t)) = E{M(t)2}) = E{↗M↘(t)} = E{[M](t)}.
This is similar to a Poisson process (a homework question)!
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Informal argument for ↗M↘(t) =
∫
t

0 ω(s)ds.

Let d↗M↘(t) = VAR(dM(t) | Ft↓) be the increment of the predictable
variation in a small interval [t, t + dt).
Consider the following heuristic argument

d↗M↘(t) =Var(dM(t) | Ft↓)

=Var(dN(t)↓ ω(t)dt | Ft↓)

=Var(dN(t) | Ft↓) because ω(t) is predictable

Remember that dN(t) ≃ {0, 1} and thus (informally)

ω(t)dt = P(dN(t) = 1 | Ft↓) = E(dN(t) | Ft↓),

and
d↗M↘(t) = ω(t)dt(1↓ ω(t)dt) ⇐ ω(t)dt.
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From survival times to counting processes

Let us explicitly consider the relation between survival times and counting
processes.

Consider n individuals with survival times T1,T2, . . . ,Tn.16

Suppose that these survival times are independent and that Ti is
distributed according to hazard εi (t).

Define the individual basic (uncensored) process Nc

i
(t) = I (Ti ↑ t).17

Define the filtration {Fc
t } is an increasing family of ϑ algebras

generated by N
c

i
(t).18

16When not otherwise stated, we will assume that Ti is absolutely continuous and
thus the events do not happen at the same time w.p.1, Ti →= Tj↑i , j .

17Here superscript ”c” denotes complete, to highlight that this is the count of the
event process, that might be unobserved due to censoring.

18the generated filtration associated to a stochastic process is a filtration which
records the ”past behaviour” of the process at each time.
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From survival times to counting processes (informally)

Let, dNc

i
(t) denote the number of jumps of the process in a small

interval [t, t + dt), such that only a single event can occur in the
interval. Then, heuristically,

P(dNc

i (t) = 1 | Fc

t↓) = P(t + dt > Ti → t | Fc

t→)=






εi (t)dt,Ti → t,

0,Ti < t.

The intensity process ωc

i
(t) is

ωc

i (t)dt = P(dNc

i (t) = 1 | Fc

t↓).

= E(dNc

i (t) | Fc

t↓) bc. dN
c

i (t) is binary.
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Note that:

We can write ωc

i
(t) for i = 1, 2, . . . on the multiplicative form

ωc

i (t) = εi (t)I (Ti → t),

where εi (t) is the hazard rate.
If T1,T2, . . . ,Tn are i.i.d. we can indeed write

ωc

i (t) = ε(t)I (Ti → t).
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Counting process for a survival function

Suppose we have survival times T1,T2, . . . ,Tn corresponding to the
survival times of n independent individuals.

Define the aggregated process Nc(t) =
∑

n

i=1 N
c

i
(t).

that counts the number of events in the population, e.g. deaths in a
medical study.

For i.i.d. individuals we have

ωc(t)dt = ε(t)
n∑

i=1

I (Ti → t)dt when εi (t) = ε(t).
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Illustration: Aggregated survival
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Right censoring

We follow subjects over time and observe (T̃i ,Di ),

T̃i = Ti if Di = 1,

T̃i < Ti if Di = 0.

Indeed, T̃i = Ti ⇒T
↔
i
= min(Ti ,T ↔

i
), where T

↔
i
is called the censoring

time.

We define the right censoring process
Ci (t) = I (t > T

↔
i
) = 1↓ I (t ↑ T

↔
i
).

This process is left continuous.

Let Zi (t) = I (t ↑ T̃i ).
Process denoting ”no event yet”
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Before we introduce independent censoring

To be clear, let L0 be a set of baseline covariates and let’s write out some
explicit examples of filtrations:
Nt = ϑ(N(u); 0 ↑ u ↑ t) (sometimes called the self-exciting filtration)
N c

t = ϑ(Nc(u); 0 ↑ u ↑ t) (another self-exciting filtration)
Fc

0 = ϑ(L0,A) and Fc
t = ϑ(L0,Nc(u); 0 ↑ u ↑ t).

Gt = ϑ(A, L0,Nc(u),C (u); 0 ↑ u ↑ t) so {Gc
t } ⇑ {Fc

t }.
Ft = ϑ(A, L0,N(u),Z (u); 0 ↑ u ↑ t).
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Some important things to remember

A counting process is a right-continuous stochastic process {N(t); t → 0}
with jumps of +1.

The Doob-Meyer decomposition ensures that there exists a unique
predictable process !(t) such that M(t) = N(t)↓ !(t) is a mean zero
martingale.

Martingales are generalizations of random errors, and a lot of nice theory is
developed for martingales.

Useful, remember that Var(M(t)) = E{M(t)2}) = E↗M↘(t) = E{[M](t)}.

We follow subjects over time and observe (T̃i ,Di ),

T̃i = Ti if Di = 1,

T̃i < Ti if Di = 0.

Indeed, T̃i = Ti ⇒ T
→
i
= min(Ti ,T →

i
), where T

→
i
is the censoring time.
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Independent censoring (technical definition)

Definition (Independent censoring, Andersen et al)

Let Nc be the basic (uncensored) counting process with compensator !c

(i.e. cumulative intensity) with respect to a given filtration {Fc
t }. Let C

be a right-censoring process which is predictable with respect to a
filtration {Gt} ⇑ {Fc

t }. Then we call the right-censoring of N generated
by C independent if the compensator of Nc with respect to Gt is also !c .

Intuition (i): keep the risk sets (i.e. those who are alive and not censored)
representative for the whole population.
Intuition (ii): Knowledge of the censoring times does not alter the
intensity process for N.
This definition is quite abstract. Perhaps unnecessarily abstract. I think a
better definition is given by thinking causally. In the next slide, we do this.
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A better way of encoding and grasping independent
censoring is to consider causal graphs

The heuristic idea is to ensure that the censoring variable is independent of
the future outcome variables, given the measured past (the filtration).

We can state this as an independence condition with respect to the outcome
of interest (in a discrete time setting).

The history of a random variable through k is denoted by an overbar, e.g.
Lk ⇓ (L0, . . . , Lk), and future events are denoted by underbars, e.g.
N

k
⇓ (Nk , . . . ,NK ).

A setting where we have access to baseline covariates L0 and treatment A, it is
su#cient to evaluate:

N
c

k
⇔⇔ Ck | L0,Nk↑1 = Ck↑1 = 0,A (8)

where L0,Nk ,C k can be interpreted as a discrete filtration, i.e. everything that is
measured in the past.
This assumption requires that at each follow-up time, given the measured past, censoring
is independent of future counterfactual outcomes had censoring been eliminated.
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Time-varying version

A setting where we have access to time-varying covariates Lk .

N
c

k
⇔⇔ Ck | Lk ,Nk↑1 = Ck↑1 = 0,A (9)

where Lk = lk , Lk = Ck can be interpreted as a discrete filtration, i.e. everything
that is measured in the past.
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Our graph from the HIV example

A C

L

U

Y
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Time-varying version (U omitted to avoid clutter)

A C1

L0

N
c

1 C2

L1

N
c

2

Here, we can use d-separation to read o$ that

N
c

1 ⇔⇔ C1|L0,A, (10)

and
N

c

2 ⇔⇔ C2|L1,Nc

1 = C1 = 0,A (11)
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How to generate random censoring times?

Simple example

Draw n independent variables T ↔
i
↖ Pc where Pc has support [0, ϖ).

For each i = 1, . . . , n, draw Ti ↖ Pn independently of T ↔
i
where Pn

has support [0, ϖ).

Set T̃i = min(T ↔
i
,Ti ) and set Di = I (Ti ↑ T

↔
i
).
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Argument for independent censoring

We will use the innovation theorem.

Theorem (Innovation theorem)

An intensity ωF →→

i
(t) with respect to a filtration {F ↓↓

t
} such that {F ↓

t
} ⇑ {F ↓↓

t
},

satisfies

ωF →→

i
(t) = E(ωF →

i
(t) | F ↓↓

t↑).

Proof.
We use iterative expectations for small dt (informally),

ωF →→

i
(t)dt = E(dNi (t) | F ↓↓

t↑) = E{E(dNi (t) | F ↓
t↑) | F ↓↓

t↑},

and the result follows because

ωF →

i
(t)dt = E(dNi (t) | F ↓

t↑).
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Independent censoring allows us to write....

Theorem (identification under independent censoring)

Under independent censoring, the intensity of the right-censored counting

process Ni can be written as

ωi (t)dt = Zi (t)εi (t)dt

where Zi (t) = I (t ↑ T̃i ) and εi is the hazard of the ”complete” counting

process

ωc

i (t)dt = Z
c

i (t)εi (t)dt

where Z
c

i
(t) = I (t ↑ Ti ).

Thus, importantly, we can identify εi from the censored data under
independent censoring.
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Proof independent censoring

Proof.

As before, define Ci (t) = I (t > T
↔
i
), which is left continuous and Ft

predictable.
Define Zi (t) = I (t ↑ T̃i ).

ωF
i (t)dt = E(dNi (t) | Ft↓) = E(dNc(t)[1↓ Ci (t)] | Ft↓)

= E{E(dNc(t)[1↓ Ci (t)] | Gt↓) | Ft↓} (iterative expectation)

= E{[1↓ Ci (t)]E(dNc(t) | Gt↓) | Ft↓} (Ci is predictable)

= E{[1↓ Ci (t)]ω
G
i
(t)dt | Ft↓} (innovation theorem)

= E{I (t ↑ T
↔
i )I (t ↑ Ti )εi (t)dt | Ft↓} (independent censoring)

= E{Zi (t)εi (t)dt | Ft↓}
= Zi (t)E{εi (t)dt | Ft↓} (Zi is Ft predictable)

= Zi (t)εi (t)dt (assuming εi is Ft predictable).
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Section 11

Estimation
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Multiplicative intensity model

Definition (Multiplicative intensity model)

The multiplicative intensity model is the class of statistical models that
has an intensity process ω(t) of a counting process N wrt. a filtration
{Ft} where

ω(t) = ε(t)Z (t),

such that ε(t) is a non-negative deterministic function and Z (t) is a
(left-continuous and adapted) predictable process that does not depend on
ε(t).

Note that:

Z (t) is observable

Remember that Z (t) =
∑

n

i=1 I (T̃i → t) in our example with censored
survival times with εi (t) = ε(t).

Zi (t) = I (Ti → t) in the uncensored survival examples before.
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The Nelson-Aalen estimator

Let T1 < T2 < . . . be jump times of a counting process N(t) with an
intensity that satisfies the multiplicative intensity model.

Definition (Nelson-Aalen Estimator)

The Nelson-Aalen estimator of H(t) =
∫
t

0 ε(s)ds is

Ĥ(t) =
∑

Tj↗t

1
Z(Tj )

⇓
∑

Tj↗t
”Ĥ(Tj),

where Z (t) is an ”at risk” process, where Z (t) → 0.
As before, we will let Z (t) =

∑
n

i=1 I (T̃i → t).
That is, the estimator is a weighted sum over the jump times of N.
Thus, the Nelson-Aalen estimator, Ĥ(t) =

∑
Tj↔t

1
Z(Tj )

, is a counting process

integral, where 1
G(t) = Z (t) =

∑
n

i=1 I (T̃i → t).

This is a non-parametric estimator; not imposed structure on ε(t) or H(t).
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Example of multiplicative intensity model:

We have already seen that: ωi = εi (t)I (T̃i → t) wrt. Fc
t under

independent censoring

Suppose that ωi = ε(t)I (T̃i → t), then
ω(t) =

∑
n

i=1 ωi (t) = ε(t)Z (t),
where ε(t) is non-negative and Z (t) =

∑
n

i=1 Zi (t) is the number at
risk just before t.

This holds when we have i.i.d. individuals such that the survival times
Ti is distributed with hazard ε(t).
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Transformation of a martingale

Let G = {G0,G1,G2, . . . } be a predictable stochastic process and
M = {M0,M1,M2, . . . } be a martingale wrt {Fn}.
Define Z = {Z0,Z1,Z2, . . . } by

Zn = G0M0 + G1(M1 ↓M0) + · · ·+ Gn(Mn ↓Mn↓1).

If M0 = 0, then Z is a mean zero martingale,

E(Zn ↓ Zn↑1 | Fn↑1) = E(Gn(Mn ↓Mn↑1) | Fn↑1) = GnE(Mn ↓Mn↑1|Fn↑1) = 0.

The process Z is denoted the transformation of M by G and it is written
Z = G •M. There is a close connection to stochastic integration here, as we will
see. Stochastic integration is integration of one stochastic process with respect to
another stochastic process. The importance of stochastic integrals will be clear
when we study estimators.

Mats J. Stensrud Biostatistics Spring 2024 151 / 419



Stochastic integrals for counting processes

Let G = {G (t) : t ≃ [0, ϖ ]} be a predictable stochastic process and
M = {M(t) : t ≃ [0, ϖ ]} be a mean zero martingale wrt {Ft}.
Consider the stochastic integral for a counting process Martingale M,

I (t) =

∫
t

0
G (s)dM(s)

= lim
n→↑

n∑

k=1

Gk”Mk ,

where [0, t] is partitioned into n subintervals of length t/n
and Gk = G ((k ↓ 1)t/n) and ”Mk = M(kt/n)↓M((k ↓ 1)t/n).20

This is a Stieltjes integral.

Importantly, I (t) is a mean zero martingale wrt {Ft}.
This is the limit of discrete time transformations (Slide 151)

20In general, the limiting distribution is not valid and we must introduce Itô integrals.
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Stochastic integrals for counting processes

However, from the Doob-Meyer decomposition we see that

I (t) =

∫
t

0
G (s)dM(s)

=

∫
t

0
G (s)dN(s)↓

∫
t

0
G (s)ω(s)ds

=
∑

Tj↗t

G (Tj)↓
∫

t

0
G (s)ω(s)ds.

Here,
∫
t

0 G (s)dN(s) =
∑

Tj↗t
G (Tj) is denoted the counting process

integral of G .
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